Stability of Twisted States in the Kuramoto Model on Cayley and Random Graphs

نویسندگان

  • Georgi S. Medvedev
  • Xuezhi Tang
چکیده

The Kuramoto model (KM) of coupled phase oscillators on complete, Paley, and Erdős-Rényi (ER) graphs is analyzed in this work. As quasirandom graphs, the complete, Paley, and ER graphs share many structural properties. For instance, they exhibit the same asymptotics of the edge distributions, homomorphism densities, graph spectra, and have constant graph limits. Nonetheless, we show that the asymptotic behavior of solutions in the KM on these graphs can be qualitatively different. Specifically, we identify twisted states, steady state solutions of the KM on complete and Paley graphs, which are stable for one family of graphs but not for the other. On the other hand, we show that the solutions of the IVPs for the KM on complete and random graphs remain close on finite time intervals, provided they start from close initial conditions and the graphs are sufficiently large. Therefore, the results of this paper elucidate the relation between the network structure and dynamics in coupled nonlinear dynamical systems. Furthermore, we present new results on synchronization and stability of twisted states for the KM on Caley and random graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small-world networks of Kuramoto oscillators

The Kuramoto model of coupled phase oscillators on small-world (SW) graphs is analyzed in this work. When the number of oscillators in the network goes to infinity, the model acquires a family of steady state solutions of degree q, called q-twisted states. We show that this class of solutions plays an important role in the formation of spatial patterns in the Kuramoto model on SW graphs. In par...

متن کامل

Stability of Twisted States in the Continuum Kuramoto Model

We study a nonlocal diffusion equation approximating the dynamics of coupled phase oscillators on large graphs. Under appropriate assumptions, the model has a family of steady state solutions called twisted states. We prove a sufficient condition for stability of twisted states with respect to perturbations in the Sobolev and BV spaces. As an application, we study the stability of twisted state...

متن کامل

On the eigenvalues of normal edge-transitive Cayley graphs

A graph $Gamma$ is said to be vertex-transitive or edge‎- ‎transitive‎ ‎if the automorphism group of $Gamma$ acts transitively on $V(Gamma)$ or $E(Gamma)$‎, ‎respectively‎. ‎Let $Gamma=Cay(G,S)$ be a Cayley graph on $G$ relative to $S$‎. ‎Then, $Gamma$ is said to be normal edge-transitive‎, ‎if $N_{Aut(Gamma)}(G)$ acts transitively on edges‎. ‎In this paper‎, ‎the eigenvalues of normal edge-tra...

متن کامل

On the eigenvalues of Cayley graphs on generalized dihedral groups

‎Let $Gamma$ be a graph with adjacency eigenvalues $lambda_1leqlambda_2leqldotsleqlambda_n$‎. ‎Then the energy of‎ ‎$Gamma$‎, ‎a concept defined in 1978 by Gutman‎, ‎is defined as $mathcal{E}(G)=sum_{i=1}^n|lambda_i|$‎. ‎Also‎ ‎the Estrada index of $Gamma$‎, ‎which is defined in 2000 by Ernesto Estrada‎, ‎is defined as $EE(Gamma)=sum_{i=1}^ne^{lambda_i}$‎. ‎In this paper‎, ‎we compute the eigen...

متن کامل

On the distance eigenvalues of Cayley graphs

In this paper, we determine the distance matrix and its characteristic polynomial of a Cayley graph over a group G in terms of irreducible representations of G. We give exact formulas for n-prisms, hexagonal torus network and cubic Cayley graphs over abelian groups. We construct an innite family of distance integral Cayley graphs. Also we prove that a nite abelian group G admits a connected...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Nonlinear Science

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2015